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ABSTRACT
Neural networks’ synchronization by mutual learning discovered and described by 
Kanter et al. [12] can be used to construct relatively secure cryptographic key ex-
change protocol in the open channel. This phenomenon based on simple mathematical 
operations, can be performed fast on a computer. The latter makes it competitive to 
the currently used cryptographic algorithms. An additional advantage is the easiness 
in system scaling by adjusting neutral network’s topology, what results in satisfac-
tory level of security [24] despite different attack attempts [12, 15]. With the aid of 
previous experiments, it turns out that the above synchronization procedure is a sto-
chastic process. Though the time needed to achieve compatible weights vectors in 
both partner networks depends on their topology, the histograms generated herein 
render similar distribution patterns. In this paper the simulations and the analysis of 
synchronizations’ time are performed to test whether these histograms comply with 
histograms of a particular well-known statistical distribution. As verified in this work, 
indeed they coincide with Poisson distribution. The corresponding parameters of the 
empirically established Poisson distribution are also estimated in this work. Evidently 
the calculation of such parameters permits to assess the probability of achieving both 
networks’ synchronization in a given time only upon resorting to the generated distri-
bution tables. Thus, there is no necessity of redoing again time-consuming computer 
simulations.
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INTRODUCTION

Neural networks represent a model of func-
tioning living organisms’ brains and human brain 
in particular. Currently available technologies 
allow simulating the work of merely relatively 
small networks in comparison to the real brain 
size. There is still ongoing work on increasing 
the scale of possible experiments. In particular, 
the work of IBM engineers on the creation and 
the use of chips operating like the brain [10] and 
The Human Brain Project [18] form the most ad-
vanced research topics within the discussed field. 
Functioning of artificial neural networks copying 
human brain, is based on processing of incoming 

signals and classifying them to one of the sev-
eral groups. Each of the networks’ input signals 
is amplified or reduced, accordingly by the cor-
responding weight value which determines the 
significance of a given input. Such classification 
mechanism is successfully applied to the recogni-
tion of bank or shop customers’ behavior patterns 
or to analyze the results of medical examinations 
to discover patterns characteristic for some dis-
ease entities [17]. Before one uses neural network 
this network must first undergo a pertinent train-
ing process [21, 22]. In particular, the so-called 
supervised learning step of the feed-forward neu-
ral network consists of modifying the network’s 
weights via specific optimization process. Algo-



21

Advances in Science and Technology – Research Journal  vol. 7 (18) 2013

rithms used for finding the optimal weights for 
a given neural network modify (via the updating 
procedure – see [8]) the corresponding values of 
multiple weights, which consequently leads to a 
very different output of the entire network. Ad-
ditionally, the neural network is considered to be 
trained, if the number of misclassified input vec-
tors falls below an arbitrarily admitted threshold. 
Thus upon completing the training phase, the 
network can still provide erroneous classifica-
tion. Typically, the initial values   of weights are 
determined randomly, and although the learning 
process is described by deterministic algorithm, 
the trained network depends on initial guesses 
for network’s weights. In particular, for different 
values   of optimal weights the same accuracy in fi-
nal classification can still be reached. This can be 
easily seen in a very simple example of a network 
implementing a logical AND function. Figure 1 
shows the separation of the input signal space 
for the AND function achieved by a single arti-
ficial neuron with selected two different sets of 
weights. The so-called decision boundaries repre-
senting two collections of weights are illustrated 
by red and green colors, respectively. The dotted 
black point (1.1) stands for the AND value equal 
to 1, while the remaining three encircled points 
correspond to the values equal to 0.

Fig. 1. The AND function realized by two 
weights sets

Evidently, in both cases this single neuron 
network classifies input vectors {(0,0), (0,1), 
(1,0), (1,1)} correctly, although the computed 
weights vary – each one is geometrically repre-
sented by different decision boundary (modulo 
k, w=kw1, k>1). Additionally, for this particular 
example (forming the so-called linearly sepa-
rable set of data), it is visible that we have in-
finitely many straight lines separating the above 

points. Thus, there are also infinitely many dif-
ferent weights for our single neuron network to 
classify the Boolean AND function. Such ambi-
guity yielding a correct network output, extends 
also to the general class of networks with more 
complex topologies. The existence of multiple 
correct weights in neural networks shifts them 
aside to the fringe of cryptographers’ attention. 
The latter comes from the fact that in order to 
encrypt and to sign messages it is usually neces-
sary for both sender and receiver to possess the 
key number with the same value. This problem 
can also be seen using newer neuro-fuzzy sys-
tems [3]. However, despite the above mentioned 
disadvantage, in certain applications neural net-
works are still applied as a sophisticated tool for 
crypto-analysis [9].

The research conducted in [11-15] indicates 
the possibility of using artificial neural network to 
create a secure cryptographic key exchange proto-
col. This work introduces specific conditions and 
modifications imposed on the network topology, 
weight values  , networks learning procedure and 
finally on the activation function within the out-
put neurons. Such modified network is called the 
TPM (Tree Parity Machine) – see e.g. [12, 13]. 
A characteristic fact for TPM is that in the process 
of mutual network training a static learning set is 
substituted by randomly generated input vectors. 
These restrictions make the so-far used methods 
to evaluate the accuracy of the network in question 
(by examining the error of the pertinent energy 
functions) inapplicable. There is no a priori given 
learning set, which could be used as reference for 
such analysis. The proposed key exchange proto-
col is based on the phenomenon of synchroniza-
tion of the mutual learning of neural networks. 
The sender and receiver create networks with 
the same topology and start with randomly cho-
sen different weights’ values, which also remain 
confidential. In a sequel, both networks receive 
the same input vector and evaluate their outcome 
values , which are then exchanged. Sender’s net-
work treats the result of the recipient’s network as 
the expected result, and in a similar fashion the 
recipient’s network exploits the result of sender’s 
network. In the next step both networks modify 
their weights in accordance with the pre-selected 
learning method. Commonly used methods co-
incide with Hebbian rule, Anti-Hebbian rule or 
with the Random Walk rule [8, 21-23]. In the sub-
sequent step of the algorithm new input vectors 
common to both networks are randomly chosen. 
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As previously, both networks’ results are calcu-
lated and mutually exchanged. The networks’ 
weights are modified accordingly. Upon certain 
number of iterations of this procedure, two net-
works reach synchronization state, guaranteeing 
the same respective values   of two collections of 
weights. The latter can be used directly as crypto-
graphic keys, or as the seed of the algorithm that 
generates pseudo-random numbers, forming the 
role of respective keys [2, 13].

It is shown in [15], that bidirectional inter-
action between sender and receiver, which is 
achieved by exchange of TPM’s outputs, allows 
faster synchronization than unidirectional network 
learning, which can perform a potential attacker. 
This difference in time needed to finish synchro-
nization is crucial for security of the created key 
exchange protocol. Another strengthening of the 
proposed schema can be the best precise deter-
mination of the point at which TPM’s are already 
synchronized, what in turn allows a quick termi-
nation of the learning process [4]. It makes it less 
susceptible for potential attack to occur by a third 
party. The latter holds as the time available for be-
ing attacked is reduced together with the amount 
of information potentially accessed by the attacker.

Computers and data stored on them are ex-
posed to many attacks [6], and their protection 
is the main research area of cryptology. Crypto-
graphic keys are numbers used in the algorithm as 
an additional input to the encryption and authenti-
cation of documents. In symmetric cryptography 
systems, the same key for encryption and decryp-
tion is applied. The security is based here on en-
suring that the key is known only to the sender 
and receiver, who are both trusted parties. Asym-
metric cryptography presents a different approach 
[20] in which both of these operations use a pair 
of keys. One of them is secret and refers to the 
private key and the other one, which is known, 
is coined as the public key. Using this system, 
first the sender retrieves the recipient’s public key 
and encrypts the message. In sequel the receiver, 
having obtained the ciphertext, transforms it us-
ing his private own key to the plaintext. Asym-
metric algorithms are slower in action. Therefore, 
in practice they are used for establishing the key 
that is applied in further communication with the 
aid of symmetric algorithms and also to encrypt 
small parts of data [25]. In addition, depending 
on various applications, the keys can be divided 
into different classes. Namely, they are applied to 
either encrypt messages, to decrypt cryptograms, 

to compute the digital signature, to verify signa-
tures, to compute authentication code from mes-
sages, to verify this code and finally also to estab-
lish keys in further communication [1].

OBJECTIVE AND METHODOLOGY

Synchronization of the TPMs is a stochastic 
process, and the time needed to reach the same 
values   of weights of the network with a given 
structure, depends on randomly selected initial 
weights and on randomly generated input vec-
tors, respectively. In fact, the size of the network 
affects also the network synchronization time. 
Naturally, bigger TPMs synchronize longer. The 
simulation results [12] (see also figure 4) show 
that the distribution of a synchronization time for 
TPM networks with a given topology is asymmet-
ric. Namely, the respective frequencies measuring 
how often both nets synchronize in a given num-
ber of steps are high on the left and skewed toward 
the right. In addition, the network’s size does not 
affect the built-in distribution characteristics. The 
main task of this work is to determine the type of 
the observed distribution and its parameters for 
the network with different structures. A compari-
son of this generated distribution is accomplished 
here with the Poisson distribution, which is well-
known and can be exploited by using e.g. standard 
distribution tables. The latter, permits in turn to 
determine the probability for TPMs to be synchro-
nized in a given number of steps. Mathematical 
description of TPM synchronization with simple 
Poisson distribution permits to continue further 
theoretical research of this process, similarly to 
hte application mathematical models depicting 
various physical phenomena [16].

The simulations of networks’ synchronization 
are carried out with different topologies by the au-
thors’ computer program. The obtained results of 
the synchronization measurements are analyzed 
with MS Excel. Due to the fact that the range of 
the analyzed sample is very high, it is divided into 
respective intervals. Therefore, the analysis of the 
TPMs’ synchronization time is contained within a 
particular interval instead of specifying the prob-
ability of exact number of synchronization steps.

TREE PARITY MACHINE

Artificial neural network used in synchroniza-
tion is similar to the tree-like structure with cer-
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tain selected disjoint perceptron’s receptive input 
fields. An example of a TPM network is shown 
in Figure 2. Here a feed-forward, multi-layer 
network, has in the output layer always only one 
perceptron. Alternatively, disjoint input fields can 
be linked with all neurons in the hidden layer but 
the unmarked connections between input impuls-
es and first hidden neurons’ layers should have 
weights always equal to zero.

TPM’s hidden layer consist of K neurons, 
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 𝜎𝜎𝑗𝑗,𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝜑𝜑𝑡𝑡) = �
−1, 𝑖𝑖𝑓𝑓 𝜑𝜑𝑡𝑡 ≤ 0
    1, 𝑖𝑖𝑓𝑓 𝜑𝜑𝑡𝑡 > 0

 

str. 23, kol. 1, akapit 3 𝑖𝑖 ∈ [1;𝑛𝑛] 

 𝑛𝑛 ∈ ℕ 

 {−𝐿𝐿,−𝐿𝐿 + 1, … , 𝐿𝐿 − 1, 𝐿𝐿} 

str. 23, kol. 2, akapit 1 𝜏𝜏 = ∏ 𝜎𝜎𝑗𝑗𝐾𝐾
𝑗𝑗=1  

str. 23, kol. 2, akapit 2 (punkty) 𝑤𝑤𝑘𝑘𝑘𝑘
(𝑡𝑡+1) = 𝑤𝑤𝑘𝑘𝑘𝑘

(𝑡𝑡) − 𝑥𝑥𝑘𝑘𝑘𝑘𝜎𝜎𝑘𝑘 

 𝑤𝑤𝑘𝑘𝑘𝑘
(𝑡𝑡+1) = 𝑤𝑤𝑘𝑘𝑘𝑘

(𝑡𝑡) + 𝑥𝑥𝑘𝑘𝑘𝑘𝜎𝜎𝑘𝑘 

 𝑤𝑤𝑘𝑘𝑘𝑘
(𝑡𝑡+1) = 𝑤𝑤𝑘𝑘𝑘𝑘

(𝑡𝑡) + 𝑥𝑥𝑘𝑘𝑘𝑘 

str. 24, kol. 1, akapit 1 𝑤𝑤𝑘𝑘𝑘𝑘
(𝑡𝑡+1) 

str. 25, kol. 1, akapit 1 𝐿𝐿 ∈ {1,2, … ,5,10,15, … ,50} 

str. 25, kol. 1, akapit 5 𝑃𝑃[𝑋𝑋 = 𝑘𝑘] = 𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!
 

str. 25, kol. 2, akapit 1 𝜒𝜒2 = ∑ (𝑂𝑂𝑖𝑖−𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖
𝑟𝑟
𝑘𝑘=1  

 𝜒𝜒2 ≈ 0,12 

str. 26, kol. 1, akapit 1 𝜒𝜒2 

. Each of them is built on the basis of the 
model of McCulloch-Pitts [19] with bipolar, step 
activation function, given by the following for-
mula:

  

str. 23, kol. 1, akapit 2 𝐾𝐾 ∈ ℕ 

 𝜎𝜎𝑗𝑗,𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝜑𝜑𝑡𝑡) = �
−1, 𝑖𝑖𝑓𝑓 𝜑𝜑𝑡𝑡 ≤ 0
    1, 𝑖𝑖𝑓𝑓 𝜑𝜑𝑡𝑡 > 0

 

str. 23, kol. 1, akapit 3 𝑖𝑖 ∈ [1;𝑛𝑛] 

 𝑛𝑛 ∈ ℕ 

 {−𝐿𝐿,−𝐿𝐿 + 1, … , 𝐿𝐿 − 1, 𝐿𝐿} 

str. 23, kol. 2, akapit 1 𝜏𝜏 = ∏ 𝜎𝜎𝑗𝑗𝐾𝐾
𝑗𝑗=1  

str. 23, kol. 2, akapit 2 (punkty) 𝑤𝑤𝑘𝑘𝑘𝑘
(𝑡𝑡+1) = 𝑤𝑤𝑘𝑘𝑘𝑘

(𝑡𝑡) − 𝑥𝑥𝑘𝑘𝑘𝑘𝜎𝜎𝑘𝑘 

 𝑤𝑤𝑘𝑘𝑘𝑘
(𝑡𝑡+1) = 𝑤𝑤𝑘𝑘𝑘𝑘

(𝑡𝑡) + 𝑥𝑥𝑘𝑘𝑘𝑘𝜎𝜎𝑘𝑘 

 𝑤𝑤𝑘𝑘𝑘𝑘
(𝑡𝑡+1) = 𝑤𝑤𝑘𝑘𝑘𝑘

(𝑡𝑡) + 𝑥𝑥𝑘𝑘𝑘𝑘 

str. 24, kol. 1, akapit 1 𝑤𝑤𝑘𝑘𝑘𝑘
(𝑡𝑡+1) 

str. 25, kol. 1, akapit 1 𝐿𝐿 ∈ {1,2, … ,5,10,15, … ,50} 

str. 25, kol. 1, akapit 5 𝑃𝑃[𝑋𝑋 = 𝑘𝑘] = 𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘!
 

str. 25, kol. 2, akapit 1 𝜒𝜒2 = ∑ (𝑂𝑂𝑖𝑖−𝐸𝐸𝑖𝑖)2

𝐸𝐸𝑖𝑖
𝑟𝑟
𝑘𝑘=1  

 𝜒𝜒2 ≈ 0,12 

str. 26, kol. 1, akapit 1 𝜒𝜒2 

j = 1, 2, 3, ..., K.

The value of this function is the value of the 
output  neuron j in time t. Argument is an 
adder block value at time t determined according 
to the formula:

,

where N is the number of input impulses to a sin-
gle neuron, xi – input signals (
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). Each weight belongs to the 
set  {–L, –L + 1, ..., L – 1, L}.

TPM network structure can be thus expressed 
with three parameters as the network of type K-N-L. 
The last layer neuron performs the multiplication 
operation, and its outcome is the output of the en-
tire network:
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Learning TPM is in accordance with one of 
the three methods [23]:
1. Anti-Hebbian rule – weights are modified if 

the outputs of both networks are different. 
This process leads to network synchronization 
with opposite vectors of weights. Weights’ 
modification complies here with the following 
formula:
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.
 This above mentioned method is originally 

used by Kanter et al. in [12]. However, as 
shown in [15] it is easier to apply a normal 
Hebbian rule, and the results generated by 
both methods are similar.

2. Hebbian rule – weights are modified if the 
TPM’s results are equal. Then synchronization 
process ends with the same weights’ values. 
Weights are modified now according to:
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3. Random Walk rule – similar to Hebbian rule, 

modification occurs when the results of the 
networks are equals. The latter leads to equal 
weights’ values for both nets. In this method, 
the weights’ adjustment does not depend on 
the output of the hidden layer neuron, but only 
on the input signal:
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 is greater than 
L, it is replaced by L. Analogously, if the weight 

Fig. 2. Tree Parity Machine topology



Advances in Science and Technology – Research Journal  vol. 7 (18) 2013

24

value is less than -L, it’s substituted with -L. Net-
works that reached the synchronization status are 
synchronized regardless of further learning time.

Random Walk rule modifies weights using 
only input vector, which is randomly chosen at 
each step of synchronization so the values ob-
tained in this method are closer to uniform distri-
bution as compared to the weights gained by using 
Hebbian method. Figure 3 shows a comparison of 
the distribution of weight after synchronization of 
1000 TPMs of the structure 3–16–5 learned with 
Hebbian and Random walk rule.

The time required to achieve synchronization 
by the network depends on the initial values   of 
weights and the random input vectors chosen in 
every step of the synchronization. A typical his-
togram showing the number of synchronized net-
works in a specified number of learning cycles is 
shown in Figure 4.

In this work we analyze 10 000 synchroniza-
tions for the networks of type 3-16-3. The short-
est observed synchronization time (measured in 
the corresponding number of steps) is 46 steps, 

and the longest one is 1156, which gives the range 
of possible 1110 cycles. Average synchronization 
time equals 238 steps. The number of classes to 
create a histogram was counted using Huntsberg-
er formula [5] k = 1 + 3.32 · log 10000 = 14.28, 
which is subsequently doubled for better graph 
readability.

RESULTS

The histograms showing the number of syn-
chronized networks in a specified number of steps 
are similar for all networks with different param-
eters K-N-L. They all remind the histogram from 
Figure 4. The main difference is just the number 
of steps needed to synchronize TPMs.

For a network with the number of neurons in 
the hidden layer equal to K = 3 and with the re-
spective number of input signals for each of them 
equal to N = 16, 1000 synchronizations with dif-
ferent values   of 
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Fig. 3. Weights distribution for Hebbian and Random Walk rule

Fig. 4. Synchronization time histogram for TPM 3–16–3
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used as a learning method is invoked here. Ta-
ble 1 shows a summary of the numbers of steps 
needed for achieving synchronization: namely, 
the shortest and longest which are observed, and 
the average ones.

Table 1. Summary of the number of TPM’s synchro-
nization steps 

TPM 
parameters Min Max Average

3-16-1 7 132 33.4

3-16-2 37 394 118.3

3-16-3 80 702 264.2

3-16-4 160 1469 469.7

3-16-5 263 2849 755.6

3-16-10 1159 8579 3239.3

3-16-15 2991 20263 7657.9

3-16-20 5044 46057 14444.6

3-16-25 8242 62486 23033.2

3-16-30 14520 92569 34104.3

3-16-35 19209 124496 48443.2

3-16-40 23919 161440 64018.9

3-16-45 26191 251386 82656.0

3-16-50 42856 288219 102382.7

Given the above listed experimentally gen-
erated data, we determined next for each sample 
the range, the number of classes for histogram 
preparation, the width and the multiplicity of 
each of the classes’ intervals. Dividing the multi-
plicity of a given class by the size of the sample, 
the empirical probabilities of TPM’s synchro-
nization in each time interval are consequently 
determined.

For TPM of type 3-16-2 our results are as fol-
lows:
1. Sample size n = 1000.
2. Range R = 357.
3. Number of intervals k = 11.
4. Interval size d ≈ 32.6.

The corresponding boundaries of intervals, 
their multiplicity and network TPM 3-16-2 syn-
chronization probabilities for the number of steps 
belonging to the interval are shown in Table 2.

Given the shape of the histogram, we conjec-
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is a function of the probability for TPM syn-
chronization time. The parameter λ is the 

weighted average, which is calculated on the 
basis of empirical results using class number as 
a value and its multiplicity as weight. Hence, 
the sum of intervals’ multiplicities is equal to 
the number of analyzed nets, so weighted aver-
age for this net is equal to λ = 2,979. In sequel, 
the above mentioned hypothesis is verified in 
compliance with chi-square test, in which the 
sum is calculated:
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,

where r is the number of classes, Oi is the ob-
served probability and Ei stands for the expected 
probability. Recall that the requirement for the 
chi-squared test is that the sample size is not less 
than 8 (see [7]). For this reason, the intervals 
8–11 in Table 2 are merged to form a range of 
multiplicity 12 with the respective probability 
0.012 = 0.008 + 0.002 + 0.001 + 0.001. Finally, 
the number of classes reads as 8, and the sum 
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. The number of classes is 8, thus, the 
number of degrees of freedom is 7 = 8 – 1. From 
the chi-square statistical distribution table, the 
critical value for 7 degrees of freedom and reli-
ability level 0.999 reads as 0.59849. Since the 
sum equal to 0.12 is much lower than critical 
value 0.59849, even for restrictive level of reli-
ability, there is no reason to reject the hypothe-
sis. Hence the analyzed distribution is a Poisson 
distribution.

Similar statistical analysis is performed for 
other networks contained in Table 1. The results 
of such research are presented in Table 3. For 
each of the analyzed networks we specify here 
the observed minimal number of steps required to 
synchronize the network, the approximate width 

Table 2. TPM 3-16-2 synchronization time summary

Interval Boundaries Multiplicity Probability

1 37.0 69.6 96 0.096

2 69.6 102.1 338 0.338

3 102.1 134.7 292 0.292

4 134.7 167.3 137 0.137

5 167.3 199.9 75 0.075

6 199.9 232.4 38 0.038

7 232.4 265.0 12 0.012

8 265.0 297.6 8 0.008

9 297.6 330.2 2 0.002

10 330.2 362.7 1 0.001

11 362.7 395.3 1 0.001
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of the interval and the number of intervals used 
in the chi-squared test. As for the TPM described 
above, the last intervals are collated in one group, 
in order to satisfy requirements of minimum mul-
tiplicity of elements in interval. The latter impacts 
on some variation in the number of intervals for 
the different networks. The following columns 
contain empirically determined weighted averag-
es, which are used as  parameter λ of the Poisson 
distribution, the sum of chi-square and its criti-
cal value for reliability level equals to 0.999. The 
resulting value of the sum is less than the value 
of the distribution 
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ability. Thus the table includes the most restric-
tive level.

The generated data listed in Table 3 permits 
to answer the question, what is the probability 
for a given structure of TPMs to synchronize 
in a certain time interval. For example, let the 
network parameters be 3-16-4 and the question 
is: “What is the probability that this TPM syn-
chronizes in 600 cycles of learning”. First, one 
verifies, using the shortest time and the width 
of the interval, to which the interval belongs at 
a given time of synchronization. The first inter-
val is here (160.274), and our chosen number 
600 does not belong to this interval. The fourth 
interval coincides with (519.637) and contains 
the selected number 600, which is the searched 
length of the synchronization. Then, from the 
Poisson distribution tables the value for k = 4 
and λ = 3.09 can be read, yielding a probability of 

0.1728. This renders the answer to the above stat-
ed question. In addition, one can also calculate 
the cumulative probability value for k ≤ 4. The 
latter yields the answer to the question what is 
the probability of network synchronization at 
up to 600 steps. It should be mentioned here 
that an alternative is to compute the probability 
of the opposite event by calculating the prob-
ability of network synchronization in more than 
600 steps.

CONCLUSIONS

This work showed that the distribution of 
TPM network’s synchronization time is a Pois-
son distribution with parameter λ, which can be 
estimated as an weighted average using the ob-
served synchronization times. The outcomes of 
the chi-square test of conformity lead to the rec-
ognition of the empirical synchronization time 
distribution for the Poisson distribution at sig-
nificance level equal to 0.999. The simulations 
and analysis performed herein allow determina-
tion of parameters λ for the networks in question 
with different structures in a simple tables. The 
results generated in the presented research per-
mit further analysis of the TPM synchronization 
process based on the value of the Poisson dis-
tribution without necessity of undergoing long-
term computer simulations and again perform-
ing the analysis of the obtained results.

TPM 
parameters Min Interval width Interval count

Average 
(parameter λ) Sum χ2 Critical value

3-16-1 7 11.4 7 2.81 0.13 0.381

3-16-2 37 32.6 8 2.98 0.12 0.598

3-16-3 80 56.8 10 3.74 0.09 0.152

3-16-4 160 119.4 9 3.09 0.08 0.857

3-16-5 263 236 7 2.58 0.13 0.381

3-16-10 1159 677 9 3.57 0.06 0.857

3-16-15 2991 1576 9 3.47 0.04 0.857

3-16-20 5044 3742.1 8 3.00 0.13 0.598

3-16-25 8242 4949.3 10 3.48 0.08 1.152

3-16-30 14520 7121.3 9 3.24 0.07 0.857

3-16-35 19209 9606.5 10 3.55 0.09 1.152

3-16-40 23919 12547.5 9 3.70 0.09 0.857

3-16-45 26191 20547 8 3.27 0.15 0.598

3-16-50 42856 22387.1 8 3.16 0.08 0.598

Table 3. Chi-square test summary
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